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A Geometric Approach for Knot Selection in
Convexity-Preserving Spline Approximation

R. Morandi, D. Scaramelli, and A. Sestini

Abstract. A geometric approach is proposed for selecting the knots used
in a parametric convexity-preserving B-spline approximation scheme. The
approach automatically gives the necessary information about the shape
suggested by the data which may be exact or not.

§1. Introduction

In many different fields such as medicine, physics, engineering and computer
graphics the amount of data obtained through experimental and/or statistical
surveys is very large. Consequently, the selection of a suitable small set of
knots becomes an indispensable step within any efficient spline approximation
scheme.

In this paper, large sets of exact and non-exact data points are approxi-
mated by means of a spline approximation scheme. So a knot selection strat-
egy is necessary and this is provided by a geometric approach. In detail, the
proposed approach is based on some weights suitably associated to the data
points and directly computed from them. In addition, the method automati-
cally defines the shape suggested by the data, here assumed planar and exact
or not. Furthermore, the shape constraints for the approximating curve can
be obtained in order to reproduce the desired behaviour.

Several other approaches have been studied, such as the knot removal
methods [5,6], to reduce the number of parameters involved in an approxima-
tion problem. Interesting results are already available even for constrained
approximation [1]. However, the approach introduced here differs from those
because it does not reduce an initial large set of knots, but directly computes a
suitable set. Furthermore, it does not require the starting approximation with
many knots used in [1,5,6] for the weight definition (solving a minimization
problem for each weight).

The proposed strategy has been tested on several examples for open and
closed curves, and for exact and non-exact data points. The approximating
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curve is obtained by means of a convexity-preserving B-spline approximation
scheme. The goodness of fit of the approximation has been estimated mea-
suring the mean square distance of the data points from the resulting curve.

The outline of the paper is as follows. The problem and the method
are presented in the next section. The strategies used to define the shape
suggested by the data and to select the knots are introduced in Section 3,
and they are given in more detail in the Appendix. Finally, in Section 4 the
numerical results obtained for four sets of data points are given.

§2. The Problem and the Method

Let Pi E R 2, i = 0,... , n, be exact or non-exact data points, with n very large,
and let T = {ti C R, i = 0, ... ,n} be an assigned set of associated strictly
increasing parameter values. For non-exact data, let d be a positive assigned
quantity so that IIPi - PII2 :- d,i = 0,.. .,n, where P' is the (unknown)
exact data point corresponding to Pi. We observe that, for simplicity's sake,
the same maximum error value is assumed for all the data points.

It is well known that, if the data sets are very large and in particular the
data are non-exact, the use of an approximation scheme is the only reasonable
approach to construct a curve with the desired behaviour. Thus, here the aim
is to first define the convexity constraints suggested by the data, and then to
give a strategy for selecting a suitable small number of knots to construct a
convexity-preserving least-square B-spline approximating curve.

Let Njk(t),j = 1 - k,... ,nr - 1, be the usual B-splines of order k [4] de-
fined with an extended knot vector E* = {T1-k, . .. , TO,. .. , ,Tr,. ... ,Tnr+k-1}.

Thus, we can introduce the B-spline representation of a spline curve

nr-1

C(t)= E QyNjk(t), t E [70, Tnr], (1)
j=l-k

where Qj,j = 1 - k,... ,nr - 1 are de Boor control points.
The problem can be divided into three sub-problems. The definition of

the shape suggested by the data (that is the determination of the convex-
ity changes required to the approximating curve), the selection of the knots,
and finally the construction of the convexity-preserving least-square B-spline
approximating curve.

In particular, the shape suggested by the data is obtained through the
procedure called "Shape Determination" (SD) described in the Appendix. SD
uses some coefficients ui,i = 0,...,n, suitably associated with the data to
establish in which parameter values zero curvature is required, and to deter-
mine the curvature sign in the interval [T0 , TT]. As the planar case is here

considered, the curvature is defined as the function p(t) = C@)xG(t) where
IIC(t)II32

V X z = vI • Z2 - V2 • Z1, Vv, z E ]R2 ). Thus, the procedure "Knots Selection"
(KS) described in the Appendix selects the knot vector E = {TO, ... , n,•I} by
using the weights wi = luihi = 0,... ,n. 0* is defined as the corresponding
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extended knot vector, taking into account whether the approximating curve
is open or closed.

Finally, the last step is realized through the solution of a constrained para-
metric least-squares problem as a general constrained optimization problem.
In fact, as the general parametric case is considered, the objective function

Zi=0 IlPi - C(t = E) =0 - IIPi - ET='i-k QjNjk(ti)II2 is quadratic in the
unknowns Q j, j = 1-k,..., nr-1, but the convexity constraints are nonlinear.

§3. Data Shape Determination and Knot Selection Strategy

The SD procedure defines the shape suggested by the data, and KS selects
the knots for constructing the B-spline curve. They are presented in the Ap-
pendix, but are commented upon here. Concerning the shape determination,
SD computes the set U = {uO,... ,un} whose sign variations are the cur-
vature sign variations required for the approximating curve. If exact data
are considered, Juil is the reciprocal of the radius of the circle which passes
through the points Pi-1, Pi, Pi+,, and its sign is that of Ai = ½det(Li, Li+,),
where Li = Pi - Pi- 1 . On the other hand, the sign of Ai is a reliable geo-
metric information in the case of non-exact data only if the condition (2) of
the theorem given in this section holds. Thus, the definition of U is suitably
modified for non-exact data, using an input tolerance told and considering the
result given in the theorem below. In this case ui is defined using the circle
through the points P4 , Pi and Pri, where P1, and Pr, are suitably selected

points. In detail, li <_ i - 1, ri >_ i + 1, Ek=l, I Pk+1 - Pk[12 < told. Lp and
-•- 1 [iPk+l _ Pkl2 < told- Lp, where Lp is the length of the polygonal

Ek=-i' J 1-P 2<tl

joining the data points. SD computes the set 0 s = fr, ... r, I} C T and
the set E = {U0,... ,ons- 1 }, where 6s is such that Tr = to,Tr,• = tn and
zero curvature is required at each 7Ti, i = 1,..., ns - 1. The desired curvature
sign between ril and 7-i+1 is given by oi equal to -1 or 0 or 1. We observe
that, for d 5 0, in the procedure ui 5 0 is assumed to imply the existence of
ki E {i - 2, i - 1,i} such that ukj " Ui > O, Uk+1 " ui > 0 and Uk-+2*"ui u> 0.
This hypothesis seems to be quite reasonable as n is considered very large.

Theorem 1. Let Pi E 1R2 for i = 0,. . . , n be assigned non-exact data points,
and let d be a small positive assigned quantity such that IIPi - PsI12 _< d,i =
0, ... , n, where Pý is the (unknown) exact data point corresponding to Pi. If
d < ½ mini=l.. [Li 2 with Li = Pi - Pi-I and the condition

IIN I!2 1IIL Ji[2 + 11L+1112 > 4 d, i z1,...,n-1, (2)

holds, then
Ný .Ni >0, i=l1,...,n -1,

where N, Li LA Li, Ný = A L'+1 , L' = Pe - P 1 and the symbols

"A" and " denote the usual vector and scalar product, respectively.

Proof: We can write Pý = Pi + eivi with 0 < ei _< d and IIViii2 = 1. Then
we have Lý = Li +eivi -ei-jvi-1 and Ný = Ni +zi, where zi = Eivi ALi+i -
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e•ivli-- A L+i + -ci+lLi A vti+1 + C-Ci+lvi A vi+l - ei-lei+lvi-1 A vi+1 -

EiLi A vi + Ei-EiVij 1 A vi. Thus, we can write Ný = (I + f(Ei-1,ei, Ei+I))Ni,

where f(e-i..ceii+.) As a consequence, the assertion holds if

(1 + f(iEi-,si+j))llNijl2 > 0, that is if f(Ei-i,ei,ei+i) > -1. Now with
some algebra the following inequality can be easily obtained:

f(Ei-,ei, Ei+a) Ž - d-- [2(IIL II2 + IILi+1112) + 3d]. (3)

So, as d < I min L . 112. , d < !ILiI2+!ILi!2 . Then, the inequality (3)
and the hypothesis (2) imply that f(-l,ee ) d ((Li2 +

Li+1112)) > -1, thus proving the theorem. 0

Concerning the knot selection, in the KS procedure the knot vector e9 c T
is initialized with Es. Then, for each interval [TV._l,rj],j = 1,... , ns, it is
checked if other parameters must be inserted in the knot vector using weights
wi = IuIi = 0,... ,n. More precisely, a parameter value t1 E Tn (Trl,rj-) is
inserted in 0 if one of the following conditions holds: either the corresponding
weight wj is big enough and P1 is far enough from all the other data related to
the parameters previously introduced between T.-- 1 and T-], or the correspond-
ing weight w, is not big enough but P, is too far from them. For choosing
reasonable values for the tolerances used in the previous consideration, de-
noted as to4w, told1 and tOld2, it is assumed that the distances are relative to
an approximated curve length and the weights are relative to the maximum
weight. The parameter values between -. _1 and rj are ordered according to
a decreasing order of the corresponding weights.

§4. Numerical Results

Four numerical tests are presented to analyze the performance of the approach.
For all the considered tests the parameter values ti, i = 0,. . . , n, have been
computed with the chord-length approach and a scaling such that 0 = to <
tl < ... < tn- 1 < tn = 1. The approximated curve length L required as input
by the KS procedure has been computed as the length of the piecewise linear
interpolant of all the data points if d = 0 and of a suitably selected subset of
them if d > 0.

A sequential quadratic programming method [2] is used to construct the
approximating curve by means of the routine CONSTR of the Optimization
toolbox of the Matlab package [3]. The set of control points used to start is
chosen as the set of data points corresponding to the selected knots. Con-
cerning the constraints, as k = 4 has been used in the experiments, four
consecutive control points are required to generate a convex polygon if con-
vexity is looked for in the corresponding curve segment. In addition three
sequential collinear control points are required if zero curvature is asked at
the corresponding knot.
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For each test, a figure is given showing the corresponding approximating
curve on the left, and the related curvature plot on the right. In all the
figures the data points PO, ... , Pn are denoted with the symbol " • ", the points
associated with the knots with the symbol "o ", and the points corresponding
to the knots belonging to Es with the symbol " 0 "
The results are summarized in Table 1, where n + 1 is the number of data
points, told is the input tolerance used in the procedure SD, tol,, tOldl and
tOld2 are the input tolerances used in the procedure KS and nr + 1 is the
cardinality of the knot vector e. The symbol % denotes the percentage ratio
(nr + 1)/(n + 1). To estimate the goodness of fit of the approximation, the
Mean Square Distance (MSD) of the data points Pi,i = 0,..., n, from the
approximating curve is also given in the table.

Test 1 Test 2 Test 3 Test 4

n + 1 285 257 126 244

told - 0.2 0.2 0.5

tol" 0.11 0.20 0.10 0.50

tOld1 0.015 0.018 0.018 0.037

tOld2 0.05 0.80 0.50 0.90

nr + 1 36 30 22 8

_ 12.6 11.7 17.5 3.3

MSD 1.08e-06 1.80e-03 2.19e-04 1.06e-01

Tab. 1. Results of the tests.

In the first test, data are considered exact (d = 0), while in the other
tests they are non-exact.

Test 1 relates to a set of 285 exact data points that represent the alpha-
bet capital letter " D ". In this case only a curvature sign variation to the
approximating curve is required, as the curvature plot shows.

In Test 2, 257 non-exact data points are considered. They have been
obtained by introducing a simulated random perturbation with d = 0.4 on the
ordinates of the points (X4, y), i = 0,..., 256 defined as Z = -8+dx.i, yý =

12 , i = 0,..., 256, where Ri = sqrt(2(x) 2 ) + eps, with eps denoting
the round-off error and dx = 0.0625. We can observe that the simulated error
does not preserve the symmetry of the data, and therefore the selected knots
are not symmetric.
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Fig. 1. Test 1: On the left the approximating curve, and on the right the related
curvature plot.
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Fig. 2. Test 2: On the left the approximating curve, and on the right the related
curvature plot.

In Test 3 the error in the 126 data is obtained by introducing a simulated
random perturbation with d = 0.12 on both the coordinates of the points
(xý, yf ), i 0,..., 125 defined as xf in4 -d-i)yf=cs2 t-ii

0,.. 125, where dt = 0.008. In this case, among the data there are sequences
of quasi-collinear points, and we can observe that the approximating curve
has corresponding almost straight line segments.

An application to an engineering problem is presented in Test 4. The 244
data points are derived from measurements effected in the Power Station lo-
cated in Seraing (Belgium). The measurements are related to the active power
of the alternator in the Central, observed on 03/01/1997 between 6:30:00 and
7:00:00. In this case the maximum value of the error is d = 1.

It should be noted that, the user needs to work in an interactive way for
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Fig. 3. Test 3: On the left the approximating curve, and on the right the related
curvature plot.
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Fig. 4. Test 4: On the left the approximating curve, and on the right the related
curvature plot.

selecting suitable values of the input tolerances. Obviously, a previous check
of the data shape and of the data distribution is of great help.

§5. Appendix

SD Procedure (Shape Determination)

Input: P = {Po,...,P,}, d, told, T= {to,...,t- }
* Define two auxiliary suitable data points P- 1 and P,+,
if d = 0

for i=0,...,n
Oui = 4Ai

IjLj 112.1lLj+j 112.11 V i l2
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with Li = Pi - Pi- 1, Vi = Pi+1 - Pi-1, Ai = ldet(Li,Li+j)
end

else . Lp = En-1
L k=1 [IPk+i - PkJ12

for i = O, ... , n
olevr. = maxj=i+l.......+l f I IlP'+i -- P&H2 < told. Lp}

lev = m =-,..1 {j : IjPk+1 - PkII2 < told. Lp}
end
for i=O,...,n

e determine the biggest 1i e {-1, .. ,i - 1} and the
smallest ri E {i + 1, ... , n + 1} such that (2) holds

replacing Pj+l with Pr, and Pi-1 with P1,
if 1i < levj, or ri > lev,

oui = 0

else
111 11--iid2.11 Li+1 112.1 I'Vr 12

where Li = Pi - P, I L±i+ = Pr, - Pi, Vi = Pr, Pli,

&i = ldet(Li, Li+I)

end
end

end
0i = 1

*Oes = {to}
while i < - 1

if ui = 0

•Os = s u {ti-1}

* determine 0 < id < n - i - 1 such that

Ui = ... = Ui+id = 0 and

ui+id+1 5 0 or id = n - i - 1
E = Os U {t[ 2 +idj}

E = Os U {ti+id+l }

i= i + id + 2
elseif ui • ui+l < 0

if ui I < Ui+lI
Os = es u {ti}
Oi= i +1

else
OOS = OS U {ti+l}

9i= i + 2
end

else
0i 2+1

end
end
O = Os U {tn} {'I,...,s}
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for j = O,..., ns
es(j) = i where 7j = h

end
for j = 0,...,ns- 1

if s(j + 1) = s(j) + 1
9oj = 0

else
00j = sgn(us(j)+1 )

end
end
Output: U = {uo,... ,u}, U OS = ,... ,T{s}, 1` = 0,... ,Uns-1}.

KS Procedure (Knot Selection)

Input:

P = {Po,..,P}, ,T ={t07,...,Ttn},U = {,uo,...,, ,,}, es OS {% ... , Tn} ,
L, tol,,, t~ldl, told2 (tOldl << told2)

ewi = juil, i =0.,n
E) = O~s

OWmax = max{wo,... ,Wn}

for j = 0,...,ns
*s(j) = i where Tr = tj

end
for j = 1,...,ns

.sj =s(j)-s(j-1) +l1
* let {il,... i3, } be the index permutation of {s(j - 1),... s(j)}
such that the weights wil, ... ,wisj are in decreasing order

90i = {ts(j-1)),ts(j)}
"OPRj = {Ps(j-1), Ps(j)}
for k= l,...,sj

if Wk > tol, and VPr E PR3 IIPIL-P,12L > tOldl

*PRj PRj U {1Pik}

elseif wjk < tol, and VP, c PRj L > told2W-na. -- L

oej = oQ u {ti}
°PRj = 'PR3 U {Pi}

end
end
*0 = 0 U j

end
Output: O = fTo,..., Tnr}
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